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Abstract

A non-equilibrium chemical potential depending on the viscous pressure tensor is used to describe shear-induced diffusion in polymer
solutions flowing along cylindrical tubes. Our results generalize previous ones in three main aspects: a Flory—Huggins expression for the
equilibrium contribution to the chemical potential is used instead of the ideal-gas like expression, the full expression for the steady-state
compliance of the solution is taken into account instead of only the polymer contribution, and the influence of the solute molecular mass is
explicitly considered. As a qualitatively new result of considerable practical interest, it stands the prediction that in some circumstances, a
dynamical instability may appear, which accelerates and enhances the separation process. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stress-induced polymer migration in flowing solutions is
a relevant phenomenon in rheology, chromatography and
engineering [1-5]. A coupling between viscous pressure
and diffusion flux produces a migration of the polymer
solute towards the center of tubes and consequently a deple-
tion of solute near the wall that modifies the apparent vis-
cosity of solution. Furthermore, the sensitivity of this
phenomenon to the molecular mass makes it the basis of
macromolecular separation methods.

One of the topics of theoretical discussion in this field is
the role of thermodynamics, in particular, how the flow
contributes to the chemical potential. Indeed, many authors
[2,3,7,8] have considered that the entropic and energetic
changes produced by the stretching of macromolecules
under the action of the flow contribute to a thermodynamic
force, which drives the migration. For instance, in one of the
pioneering approaches in this line [2], a binary fluid
mixture, initially spatially homogeneous in concentration,
was subjected to a stress field which produces a thermody-
namic driving force for diffusion of macromolecules toward
the zones of lower stress (namely, the central region of the
tube). This force was taken as the gradient of a potential V as
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F = —VV; it produces a stress-induced flux given by
Dc
=—-__VV 1
Jo= - M

where D is the diffusion coefficient, ¢ the polymer concen-
tration and R and T have the usual meaning of the ideal-gas
constant and absolute temperature, respectively.

On the other hand, concentration inhomogeneities due to
this flux produce a diffusion flux described by the classical
Fick’s law Jg = —DVec. The net flux is then

J=-D| Ve + RC—TVV] )

In Ref. [2], the expression adopted for the potential V was
related to the free energy of extension of Gaussian chains,
given by Ref. [10]

¢ P’ P’
AFp,, = —=RT|1 — ) - Tr[ — -
flow 2 [ n(det cRT) r( cRT U)] 3

in such a way that V = 9AFy,,/dc. There, P” is the viscous
pressure tensor acting on the polymer and U the unit matrix.
This model accounts for how the stretching and the orienta-
tion of the macromolecules due to the flow modify the free
energy of the solution and was able to describe stress-
induced migration leading to an accumulation of polymer
near the center of the tube where the stretching of the
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macromolecules is minimum because of the vanishing
velocity gradient.

The previous model yields for the steady-state concentra-
tion profile, obtained from the condition J = 0, the equation

Ve + — vV =0. )
RT

The qualitative trends of this model are satisfactory.
However, it is convenient to go beyond it in several aspects.
For instance, this model was proposed ad hoc for this physi-
cal situation: it would be useful to derive it from a general
thermodynamic framework, which could give it a more
consistent physical justification and might suggest more
applications. From such a more general perspective, it
would be easier to evaluate the role of thermodynamic
contributions to stress-induced migration, which has lead
to several controversies (see, for instance, arguments
against it in Refs. [11-13] and in support for it in
Refs. [5-9])).

In this paper, we revisit the thermodynamic point of view
from the perspective of extended irreversible thermody-
namics (EIT) [5,14—17]. This theoretical framework is
wider than the heuristic treatment in Ref. [2] and its predic-
tions for shear-induced phase separation are found to be
qualitatively satisfactory [5,18-21]. Finally, recent applica-
tions to shear-induced diffusion in cone-and plate experi-
ments [22,24] have indicated that, due to a thermodynamic
instability, shear-induced separation is much accelerated
with respect to the predictions of the classical models, in
accordance with experimental results. Therefore, it seems
appropriate to apply this formalism to tube flows, which
have much practical interest.

2. Non-equilibrium chemical potential

In EIT, the thermodynamic quantities are assumed to
depend on their local equilibrium variables and also on
the fluxes. In the situation being analyzed here, the consti-
tutive equation for the diffusion flux turns out to be [5,17,21]

_ D
J=—DVu— VP’ 5)

with D a coefficient related to D as D = D(a,u,eqléc) with
Meq(T', P, c) the local-equilibrium chemical potential and u
a non-equilibrium chemical potential which depends on P”
as well as on the concentration ¢, pressure p and temperature
T, and which takes the form [20,21]

1 ( a(VJ)

= T,P,c)+ —
I /J“eq( c) 4\ on,

) P’ P’ (6)
T.n,PY

with 7, the number of moles of solute and J the steady-state
compliance.

Predictions of Egs. (5) and (6) have been analyzed in
detail in the context of shear-induced shift of the critical
point in polymer solutions [18—21] and in stress-induced
migration in cone-and-plate experiments [22,24] and are

satisfactory. Now, we apply Egs. (5) and (6) to the flow of
dilute polymer solutions in straight cylindrical tubes of
circular section. Recall that the only non-vanishing compo-
nents of the viscous pressure tensor in this situation are [23]
Prz = Pzr = _77% Pzz = (Nl + N2)’)./2’ Prr = NZ').IZ’ where
7 is the shear viscosity, Ny and N, the normal-stress coeffi-
cients of the solution and 7y the shear rate. We shall give
attention, as in earlier works, to upper-convected Maxwell
fluids, for which N; = 2t and N, = 0, 7 being an average
viscoelastic relaxation time of the pressure tensor [10]. In
this case, it turns out that the radial component of V-P” is
zero. Indeed,

1 Py
:("P;‘/r)_i_;aiepl(;r—‘raizp;r_ %

wpr,= L2 —0)
r or
because P, = Pgg = Py = 0 and P, does not depend on z.
This is an important difference with respect to cone-and-
plate flows, where the term V-P” is different from zero
and points towards the axis of the device, thus promoting
a migration of the particles towards the center of the tube
according to Eq. (6).

Thus, in the situation studied here, Eq. (5) reduces to J =
—DVu and introducing Eq. (6) in Eq. (5), it follows that

J= _D[V/‘Leq + V(A/~'Lﬂ0w)] ®)

where Apgow = M — Heq is the flow contribution to the
chemical potential.
Furthermore, if one assumes, as in Ref. [2], that

feq = Me(T,P) + RT Inc, ©)

then Eq. (8) becomes Eq. (2) with V identified as Augey. In
the present analysis, expression (9) for the chemical poten-
tial, which is excessively simplistic, will be substituted by
the Flory—Huggins expression, which is much more suitable
for the description of polymer solutions (see Appendix A).

Another new aspect of the present paper with respect to
previous bibliography on this problem will be the inclusion
of a more realistic expression of the steady-state compliance
appearing in Eq. (6). Instead of taking only the polymer
contribution Jy = Tp/’r]p = (cRT)fl, we consider the full
expression for the Rouse—Zimm model for dilute polymer
solutions which is given by Refs. [5,10]

CM TP
J= 2 [1 _ UB ]
cRT n(c)

(10)

where M, is the molecular mass of the polymer, 7, the
viscosity of the solvent, n(c) the viscosity of the solution
and the constant C takes the values 0.4 in the Rouse model
and 0.206 in the Zimm model.

Using J instead of J, has drastic consequences: it predicts
a shear-induced shift of the critical point towards upper
values of the temperature [5,18—-21] (as observed in
Ref. [7]) whereas J, yields a shift towards lower tempera-
tures, in contrast with the experiments. In Appendix A, the
experimental parameters appearing in the Flory—Huggins
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expression and in J are provided for solution of polystyrene
solved in oligomeric polystyrene studied in this paper.

3. Steady-state concentration profile

In the steady-state, J =0 and therefore, according to
Eq. (8), one must have

V(/J*f:q + A/J“ﬂow) =0 (11)
i.e.
Heq(€) + Aptgoy(c, P”) = const. (12)

where the constant does not depend on the radial position .
The explicit expression of the non-equilibrium chemical
potential, Eq. (6), is derived in Appendix A and allows us
to write Eq. (16) in the form

+ CviMy[n]
Meq 4RT

X[Mz[”fl] PO 2(Mz[n1 _m) P5(@)
Y

- _ ]P” : P” = const.
¢ Pg(©)

CcVy

13)

where all the symbols appearing in the later equation are
defined in Appendix A and P” : P” is given by

P":P"=2P2 + P% =207y + 2m)*y*. (14)

For Newtonian flow (7= 0) and 1 independent of concen-
tration, one has a parabolic velocity profile for which y
depends on the radial position as

V= %ﬁ = Br* (15)
R
where v, is the maximum velocity and R the radius of the
tube. The parameter 3 can be also written as 3=
16Q2/772 RE, QO being the total flow rate. Here we assume,
as in Ref. [2], that the velocity profile remains parabolic
regardless of the concentration redistribution and of non-
Newtonian effects. Thus, for consistency, we will assume
small values of ¥ (i.e. 7y < 1), in a first approximation.
In order to determine the constant appearing in Eq. (13),
for a given value of parameter QIR?, the concentration
profile must satisfy the mass conservation condition

1
J@xdle (16)
0 Cop 2

being x = r/R and ¢, the initial equilibrium concentration.
In Fig. 1, it is shown that the non-equilibrium chemical
potential (13) as a function of the concentration for several
values of Q/R® for a solution of polystyrene of molecular
mass 2000 kg mol ' solved in an oligomeric polystyrene of
molecular mass 0.5 kg mol~!. The point C, where the
several curves cross each other corresponds to the concen-
tration for which the values of the coefficient on the term

-1.102 - ’ 7

-1.104

-1.106

4. 107 (J mol")

-1.108

clc

Fig. 1. Chemical potential of polystyrene solved in oligomeric polystyrene
as a function of concentration (¢ is the equilibrium concentration) when the
parameter Q/R® takes the value 0.1772 s, The continuous curves corre-
spond to several values of x = r/R. The dashed curve corresponds to the
Flory—Huggins model (equilibrium situation).

P”:P” in Eq. (13) vanishes; thus, at this value of the
concentration, the chemical potential does not depend on
shear rate. Each horizontal line lower than point C intersects
the curves corresponding to the several values of x and gives
for each of them a value of the concentration, thus yielding
to a possible concentration profile. Point A corresponds to
the concentration in the center of the tube, where v = 0, and
point B to x=1, ie. to the concentration at r = R.
However, the only acceptable profiles are those satisfying
the normalization condition (16), which for each value of
O/R?, will fix the position of the point A. Examples of
concentration profiles obtained by this method are shown
in Fig. 2, for several values of Q/R3.

T T T
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Fig. 2. Concentration profiles of the solute as a function of radial position in
the tube for several values of Q/R3 (in s 1. The horizontal line corresponds
to the initial homogeneous profile, which would be stationary if the fluid
were at rest (Q = 0).
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For the horizontal line across C, the concentration profile
corresponds to a constant concentration for low values of x,
for which the curves of w satisfy du/dc > 0 at point C.
When ou/dc becomes negative at this point, implying that
it becomes thermodynamically unstable, the concentration
will correspond not to that at C but to the other intersection
with the curves of w, satisfying du/dc > 0. This yields a
concentration profile having the form of a central plateau
and a decreasing concentration near the border. The beha-
vior just described is shown in the curve with label 0.1914 in
Fig. 2. For horizontal lines above C, there appear stability
problems, which will be discussed in Section 4.

In Fig. 3, it is shown that the influence of the molecular
mass of the solute on the profile for given values of O/R? and
the reduced initial concentration ¢, (defined in Appendix
A). It is seen that the higher the molecular mass is, the
higher is the concentration in the central region. This
dependence on the molecular mass could be the basis of
chromatographic separation methods.

4. Separation rate

Another important feature is the separation rate. Indeed, if
the separation is slow, the length of the tubes required to
observe the steady concentration profile must be very long,
and the separation process is inefficient. Some of the exist-
ing evaluations predict in fact a slow separation. In Ref. [22],
we studied the shear-induced separation process in a cone-
and-plate device and we found that for high enough shear
rates, an instability occurs which accelerates very much the
separation with respect to the predictions based on the local-
equilibrium chemical potential. In tubes, a similar phenom-
enon may arise, as commented in this section, which may be
of much practical interest.

By combining the mass conservation equation and the
expression for the diffusion flux, the evolution of the

T T T T
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Fig. 3. Concentration profiles for different values of the macromolecular
mass of the solute for O/R* = 0.16 ™! and ¢o = 0.26.

concentration profile is described by

‘;—j = V( Ve + D A“V ) (17)

Here, we have written the diffusion flux as

a:“veq + A >V~
ac

y=—bvp =5 DSy as)

and define the effective diffusion coefficient D as

al-Leq dAp )V~
ac ac

o () (2 e 09

The term Vy2 in Eq. (18) yields the flow of particles
towards the zone with lower values of the shear rate
(provided au/ayz is positive). This accounts for the
tendency of the particles to move towards the center of
the tube. In usual conditions, when Dy > 0, this flux
towards the center is opposed by the tendency to homo-
genization due to diffusion. However, in some situations
(for values of ¢ and P” in certain regions) D.; may become
negative. In this case, the term enhances the separation,
rather than opposing to it, and the separation becomes
much faster. This may be a very interesting feature from
the practical point of view, because it both accelerates
separation and enhances the concentration near the axis.
Of course, D¢ negative corresponds to an unstable situa-
tion. Therefore, it will only last a short period, until the
separation has arrived to concentrations where D¢ becomes
again positive everywhere. In Fig. 4, the dashed curve corre-
sponds to D equal to zero and the concentration profile is

Dy = D(

501 \ b

~. M1
1.0 Rz
E
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r/R

Fig. 4. The dashed curve indicates the line where the effective diffusion
coefficient (19) becomes zero and the solution becomes unstable. The
continuous curves between D and M, and between M, and E correspond
to the concentration profile, which vanishes in the region between M, and
M,. Then, there would be a high accumulation of the solute in the central
region and a much lower accumulation in the layer near the wall. The
physical reality of the later is, for the moment, speculative.
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shown as a continuous line. This concentration profile corre-
sponds to a horizontal line above the point C in Fig. 1. For
low values of x (i.e. in the central region), the concentration
increases with the radius. This is due to the fact that in this
zone du/dy < 0 in such a way that the inhomogeneity in y
drives a flux towards zones with higher shear rate, in
contrast with the situations depicted in Fig. 2. This behavior
is stable in the region with D > 0, whereas when D g =
0, (i.e. du/dc = 0) the profile becomes unstable. According
to Fig. 4, this instability appears between the points M, and
M,, which correspond to du/dc = 0 in Fig. 1. From M, to
the border of the cylinder, the situation becomes again
stable, as D becomes again positive and the profile is
decreasing, because in this region ap,/ayz > 0, whereas
the concentration vanishes between M; and M,. From a
physical point of view, this behavior implies a strong
concentration of the solute in the central region and
maybe a tenuous presence of solute near the walls.

The concavity of the concentration profile near the axis
could be obscured in the practice by the non-vanishing value
of the gyration radius of the macromolecules, which would
tend to homogenize this central region. The outer part of the
profile could be of interest in medical situations affecting the
walls of veins or arteries, but for the moment, this is still
speculative, in contrast with the concentration in the central
zone, which is qualitatively observed.

5. Conclusions

We have generalized earlier models of shear-induced
diffusion in tubes, by using the shear-dependent chemical
potential as derived from the framework of EIT. The main
differences from the earlier model by Tirrell and Malone [2]
are the following ones:

1. In Ref. [2], the chemical potential leading to migration is
introduced ad hoc, though a microscopic model justifies
it. In our paper, the same effects are directly included in a
non-equilibrium chemical potential, which has been used
in a rather general context and in several other applica-
tions [5,18-22].

2. We have taken into account detailed experimental infor-
mation for the physical parameters and functions appear-
ing in the analysis for a solution of polystyrene in
oligomeric polystyrene, in particular, we have considered
explicitly the influence of the molecular mass of solute,
which is important in separation methods.

3. As in Ref. [2], our analysis shows that the shear flow
induces a migration of the solute towards the center of
the tube and corroborates the results by the above-
mentioned authors, but with more realistic details about
the equilibrium form of the chemical potential and of the
steady-state compliance. The concentration profiles
shown in Fig. 2 have a similar form to the profiles in
fig. 3 of Ref. [2]. Indeed, Tirrell and Malone parametrize
their curves in terms of the dimensionless quantity a =

(32/317)(Q/R3)3'/2; the curves in Fig. 2 of the present
paper correspond to values of a between 5 and 10,
when one uses for 7 relaxation times of the order of
that reported in Ref. [24] for the system we have studied.

4. An especially interesting prediction of our model, not
present in the simpler formulation in Ref. [2] is that,
beyond a critical value of the shear rate and of concen-
tration the system becomes thermodynamically unstable,
with a negative value of an effective diffusion coefficient.
This has two main effects: it accelerates the separation
process and it enhances the accumulation of solute in the
central region (between points D and M,). This could be
very interesting from a practical perspective, because it
would indicate the possibility of a more efficient separa-
tion, in a shorter time and with shorter tubes. However, a
detailed study of this regime would require to go beyond
the assumption of a parabolic velocity profile.

These instability effects, discussed in Section 3, are
analogous to those experimentally found in cone-and-plate
devices [22,25], where the observed separation rate is two
orders of magnitude faster than that predicted by local-
equilibrium thermodynamics, but compatible with the
predictions of our formalism [22]. Thus, the present analysis
together with that in Ref. [21], describes in an unified way
the shear-induced migration both in tubes and in cone-
and-plate flows, with the common feature of a faster separa-
tion, which implies that this process may have more
practical interest than those from previous analyses.

Though our approach is essentially macroscopic, it may
be interesting to provide a microscopic image of the reasons
for the migration. First of all, it is convenient to recall that
the viscous pressure tensor is directly related to the macro-
molecular configuration tensor [10], which is usually taken
as an internal variable in alternative thermodynamic
descriptions of flowing polymer solutions [13,26-29].
Thus, under the action of the viscous pressure, the macro-
molecules will become stretched (higher internal energy)
and more oriented (less entropy) than in absence of the
viscous pressure, in such a way that their free energy is
higher in the zones with higher shear rate. Thus, the macro-
molecules will tend to migrate towards regions with lower
shear rate, i.e. near the center of the tube. This is the usual
microscopic explanation, which corresponds to the last term
in Eq. (18). Besides this contribution, we also include in our
analysis the concentration dependence of the non-
equilibrium part of the chemical potential, i.e. the second
term inside the parentheses in the coefficient of the concen-
tration gradient in Eq. (18). This term vanishes in Ref. [2]
and in many other analyses based on the simple hypothesis
that J = 1/cRT, because in the chemical potential (6), the
term in ¢ > coming from dJ/dc is cancelled by the ¢? term
coming from (P”)2 = 77272 = (cRTT)Z)'/z, yielding a non-
equilibrium contribution to the chemical potential (6),
which depends on the shear rate but not on the concentra-
tion. It is precisely this dependence, which arises in our
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Fig. 5. The same as in Fig. 1 but using J = (cRT) " for the steady-state
compliance instead of the full expression (10). The marked contrast with
Fig. 1 and the lack of satisfactory experimental predictions show explicitly
the importance of using the full expression (10).

more detailed description of the steady-state compliance
(10) and is reflected in the non-monotonic character of the
chemical potential as a function of the concentration (Fig. 1),
the responsible of the instability examined in Section 4,
which does not appear, of course, in the simplified models
ignoring such dependence (Fig. 5). In the usual analyses, the
tendency of the particles to migrate towards the regions with
lower shear rate is compensated by the increase of the
chemical potential with concentration in this region; if for
a range of values of concentration and viscous pressure the
chemical potential decreases with increasing concentration,
one would have of course an instability. Characterizing this
instability from detailed microscopic models is a demanding
task for the future, beyond the scope of the present paper.
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Appendix A

In order to derive the explicit expression of the non-
equilibrium contribution to the chemical potential
introduced in Eq. (6), namely

IWEZ))
Z( an

A/-'Lﬂow = ) P": P’ (AD)
T.ny P

the functional dependence of V and J on the composition of

the system is necessary. According to the cell model, the

volume of the solution is given by V = v, (2, where v, is the

molar volume of the solvent and the parameter (2 is defined
as {2 =n; + mn, with n; and n, the number of moles of
solvent and of polymer and m the ratio between the molar
volumes of the polymer and the solvent. The concentration
and volume fraction can be expressed by the respective
equations ¢ = nyM,/v; (2 and ¢ = mn,/().

Using J = (¢RT) -1 together with (A1)—(A3), we write
Aoy = %Ta”(z - %afl)w . pY (A2)
where the reduced concentration ¢ = [n]c, with [7n] the
intrinsic viscosity, has been introduced.

If instead of J = (cRT)fl, the Eq. (10) is used in (Al), a
functional dependence between viscosity and concentration
is required. When the expression proposed in our previous
papers [21,22,24] is used
nﬂ=1+5+k52 (A3)

yields the result

A/-"‘ﬂow

- ComI[ Ml B0 (Ml )P Ty

4RT 141 c cV P6(C)
: P” = const.
(A4)
where the functions P;(¢) are
1+ke \?

0)=C¢| —————— A5

o C(1+E+k62) (A5)

Ps(@) = (k — D& + (K — 3k)& — 3k°¢* — I8 (A6)

Ps(@) = (1 + ¢ + k&?)>. (A7)

The equilibrium contribution to the chemical potential (6) is
given by the usual Flory—Huggins expression

Meq
RT

=1n(1—¢>)+(1— %)¢+X¢2. (A8)
In order to study the solutions considered in Ref. [25] (high
molecular mass polystyrene solved in an oligomeric
polystyrene whose molecular mass is 0.5 kg mol '), we
use the same numerical values as in Ref. [24]. In particular,
the dependence of the intrinsic viscosity and the Huggins
constant on the molecular mass is given by Ref. [24] [n] =
2.25% 107°M3°* and k = 497.9M5 ** These parametri-
zations are used to derive the molecular mass dependence
of the concentration profiles in Fig. 4.
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